Finite Element Implementation and Application of the DTF Model to the Asay Test

Jobie M. Gerken
Robert M. Hackett
Joel G. Bennett
ESA-EA, LANL

Objective

- Implementation of the "Next Generation" HE Constitutive Model for Use in ESA-EA "Production Codes".
 - A better micro-mechanical basis than the current production model (ViscoSCRAM).
 - Less Expensive than a GMOC approach.
- Assist in the Development and Assessment of the Model

Stress-Strain Law for the DTF Model

$$\overline{\sigma} = \frac{1}{\frac{\theta_b}{\kappa_b} + \frac{\theta_p}{\kappa_p}} tr(\overline{\varepsilon}) I + \frac{2}{\frac{\theta_b}{\mu_b} + \frac{\theta_p}{\mu_p}} \left[\overline{\varepsilon} - \frac{1}{3} tr(\overline{\varepsilon}) I \right]$$

Where,

 θ_{b}

is the volume fraction of the binder

 θ_p

is the volume fraction of the HMX particle

K

is the bulk modulus

 μ

is the shear modulus

With subscripts p and b as appropriate.

Implementation

• Explicit

 Incremental stress and stress update over each time step for each finite element.

• Implicit

- Incremental stress and stress update over each time step for each finite element.
- Form the Jacobian Tangent Stiffness for each element for global assembly.

Strain Rate Dependence

- Addition to Current DTF Model to assess Rate Effects
- Rough Phenomenological fit of DTF
 Parameters to Low, Medium and High Rate
 Test Data

DTF Rate-Dependent Fitting Sequence Using Low-Rate Test Data and the Implicit Version

DTF model parameter's for 0.44 /s test

Los Alamos National Laboratory

DTF Model Rate Dependent Fits as Implemented

Los Alamos National LaboratoryEngineering Sciences & Applications - Engineering Analysis

ASAY TEST - 10 mm Round Ended Plunger

Quartz Windows

~ 50,000 elements and nodes in this model

Los Alamos National Laboratory

ASAY TEST - 10 mm Round Ended Plunger Model

10 mm steel plunger

PBX 9501 Material

View with steel confinement removed.

View with steel confinement and windows removed.

Los Alamos National Laboratory

Stress Wave Sequence - Projectile Velocity 185 m/s

ViscoSCRAM Comparison with Test Data

Los Alamos National Laboratory

Sequence of Displacement Contour Development with the Final Frame Having Limits of the Experimental Values Applied

ViscoSCRAM Qualitative Contour Comparison as Viewed "Through the Window"

DTF Model Qualitative Contour Comparison as Viewed "Through the Window"

ASAY Test Modeled with DTF Model using Initial Parameters That Were Derived to Fit the Jerry Dick Flyer Plate Data

Experimental contours at 18 micro-seconds

Corresponding Contour limits at 17 micro-seconds from calc.

Conclusions: (1) Model is too stiff with initial parameters

(2) Material Rate Dependence is Needed

Los Alamos National Laboratory

ASAY Test Modeled with DTF Model Using the Rate-dependent Fits as Implemented

Conclusion:
With these parameters the model is too soft!

Conclusions

- A Physically Based Strain Rate Dependence Needs to be Added to the Model.
- The DTF Model is Showing Promise in Simulating Available Experimental Results.
- Computationally Cheaper Than both ViscoSCRAM and the GMOC Models.
- This Development is Work "In Progress".